Homework 3 Solution

P 4.6

Note that we have chosen the lower node as the reference node, and that the voltage at the upper node with respect to the reference node is v_{o}. Write a KCL equation (node voltage equation)by summing the currents leaving the upper node:
$\frac{v_{o}+25}{120+5}+\frac{v_{o}}{25}+0.04=0$
Solve by multiplying both sides of the KCL equation by 125 and collecting the terms involving v_{o} on one side of the equation and the constants on the other side of the equation:

$$
v_{o}+25+5 v_{o}+5=0 \quad \therefore \quad 6 v_{o}=-30 \quad \text { so } \quad v_{o}=-30 / 6=-5 \mathrm{~V}
$$

P 4.11 [a]

$$
\begin{array}{ll}
\frac{v_{1}-110}{2}+\frac{v_{1}-v_{2}}{8}+\frac{v_{1}-v_{3}}{16}=0 & \text { so } \quad 11 v_{1}-2 v_{2}-v_{3}=880 \\
\frac{v_{2}-v_{1}}{8}+\frac{v_{2}}{3}+\frac{v_{2}-v_{3}}{24}=0 & \text { so } \quad-3 v_{1}+12 v_{2}-v_{3}=0 \\
\frac{v_{3}+110}{2}+\frac{v_{3}-v_{2}}{24}+\frac{v_{3}-v_{1}}{16}=0 & \text { so } \quad-3 v_{1}-2 v_{2}+29 v_{3}=-2640
\end{array}
$$

Solving, $v_{1}=74.64 \mathrm{~V} ; \quad v_{2}=11.79 \mathrm{~V} ; \quad v_{3}=-82.5 \mathrm{~V}$
Thus, $i_{1}=\frac{110-v_{1}}{2}=17.68 \mathrm{~A} \quad i_{4}=\frac{v_{1}-v_{2}}{8}=7.86 \mathrm{~A}$

$$
\begin{array}{ll}
i_{2}=\frac{v_{2}}{3}=3.93 \mathrm{~A} & i_{5}=\frac{v_{2}-v_{3}}{24}=3.93 \mathrm{~A} \\
i_{3}=\frac{v_{3}+110}{2}=13.75 \mathrm{~A} & i_{6}=\frac{v_{1}-v_{3}}{16}=9.82 \mathrm{~A}
\end{array}
$$

[b] $\sum P_{\mathrm{dev}}=110 i_{1}+110 i_{3}=3457.14 \mathrm{~W}$

$$
\sum P_{\text {dis }}=i_{1}^{2}(2)+i_{2}^{2}(3)+i_{3}^{2}(2)+i_{4}^{2}(8)+i_{5}^{2}(24)+i_{6}^{2}(16)=3457.14 \mathrm{~W}
$$

D 117

P 4.14

The three node voltage equations are:

$$
\begin{array}{r}
\frac{v_{1}-40}{4}+\frac{v_{1}}{40}+\frac{v_{1}-v_{2}}{2}=0 \\
\frac{v_{2}-v_{1}}{2}+\frac{v_{2}-v_{3}}{\frac{v_{3}}{2}+\frac{v_{3}-v_{2}}{4}+28=0}=0
\end{array}
$$

Place these equations in standard form:

$$
\begin{array}{lll}
v_{1}\left(\frac{1}{4}+\frac{1}{40}+\frac{1}{2}\right)+v_{2}\left(-\frac{1}{2}\right) & +v_{3}(0) & =\frac{40}{4} \\
v_{1}\left(-\frac{1}{2}\right) & +v_{2}\left(\frac{1}{2}+\frac{1}{4}\right)+v_{3}\left(-\frac{1}{4}\right)=28 \\
v_{1}(0) & +v_{2}\left(-\frac{1}{4}\right)+v_{3}\left(\frac{1}{2}+\frac{1}{4}\right)=-28
\end{array}
$$

P 4.33

$$
\begin{array}{ll}
-135+3\left(i_{1}-i_{2}\right)+20\left(i_{1}-i_{3}\right)+2 i_{1} & =0 \\
5 i_{2}+4\left(i_{2}-i_{3}\right)+3\left(i_{2}-i_{1}\right) & =0 \\
10 i_{\sigma}+1 i_{3}+20\left(i_{3}-i_{1}\right)+4\left(i_{3}-i_{2}\right) & =0
\end{array}
$$

The dependent source constraint equation is:
$i_{\sigma}=i_{2}-i_{1}$
Place these equations in standard form:

$$
\begin{array}{ll}
i_{1}(3+20+2)+i_{2}(-3)+i_{3}(-20)+i_{\sigma}(0) & =135 \\
i_{1}(-3)+i_{2}(5+4+3)+i_{3}(-4)+i_{\sigma}(0) & =0 \\
i_{1}(-20)+i_{2}(-4)+i_{3}(1+20+4)+i_{\sigma}(10) & =0 \\
i_{1}(1)+i_{2}(-1)+i_{3}(0)+i_{\sigma}(1) & =0
\end{array}
$$

Solving, $\quad i_{1}=64.8 \mathrm{~A}, \quad i_{2}=39 \mathrm{~A} ; \quad i_{3}=68.4 \mathrm{~A} ; \quad i_{\sigma}=-25.8 \mathrm{~A}$
Calculate the power:
$p_{20 \Omega}=20(68.4-64.8)^{2}=259.2 \mathrm{~W}$
Thus the 20Ω resistor dissipates 259.2 W .
P 4.34

The mesh current equations:

$$
\begin{array}{ll}
-132+1 i_{1}+3\left(i_{1}-i_{3}\right)+2\left(i_{1}-i_{2}\right) & =0 \\
-7 i_{\phi}+2\left(i_{2}-i_{1}\right)+10\left(i_{2}-i_{3}\right) & =0 \\
5 i_{3}+10\left(i_{3}-i_{2}\right)+3\left(i_{3}-i_{1}\right) & =0
\end{array}
$$

The dependent source constraint equation:
$i_{\phi}=i_{2}-i_{3}$
Place these equations in standard form:

$$
\begin{array}{ll}
i_{1}(1+3+2)+i_{2}(-2)+i_{3}(-3)+i_{\phi}(0) & =132 \\
i_{1}(-2)+i_{2}(10+2)+i_{3}(-10)+i_{\phi}(-7) & =0 \\
i_{1}(-3)+i_{2}(-10)+i_{3}(5+10+3)+i_{\phi}(0) & =0 \\
i_{1}(0)+i_{2}(-1)+i_{3}(1)+i_{\phi}(1) & =0
\end{array}
$$

Solving, $\quad i_{1}=48 \mathrm{~A} ; \quad i_{2}=36 \mathrm{~A} ; \quad i_{3}=28 \mathrm{~A} ; \quad i_{\phi}=8 \mathrm{~A}$
Solve for the power:
$p_{\text {dep source }}=-7\left(i_{\phi}\right) i_{2}=-7(8)(36)=-2016 \mathrm{~W}$
Thus, the dependent source is developing 2016 W .

